The Terwilliger Algebra of a 2-Homogeneous Bipartite Distance-Regular Graph
نویسندگان
چکیده
منابع مشابه
The Terwilliger Algebra of a Distance-regular Graph of Negative Type
Let Γ denote a distance-regular graph with diameter D ≥ 3. Assume Γ has classical parameters (D, b, α, β) with b < −1. Let X denote the vertex set of Γ and let A ∈ MatX(C) denote the adjacency matrix of Γ. Fix x ∈ X and let A ∈ MatX(C) denote the corresponding dual adjacency matrix. Let T denote the subalgebra of MatX(C) generated by A,A . We call T the Terwilliger algebra of Γ with respect to ...
متن کاملThe Terwilliger Algebra of a Distance-Regular Graph that Supports a Spin Model
Let denote a distance-regular graph with vertex set X , diameter D ≥ 3, valency k ≥ 3, and assume supports a spin model W . Write W = ∑D i=0 ti Ai where Ai is the i th distance-matrix of . To avoid degenerate situations we assume is not a Hamming graph and ti ∈ {t0, −t0} for 1 ≤ i ≤ D. In an earlier paper Curtin and Nomura determined the intersection numbers of in terms of D and two complex par...
متن کاملThe Terwilliger Algebra Associated with a Set of Vertices in a Distance-Regular Graph∗
Let be a distance-regular graph of diameter D. Let X denote the vertex set of and let Y be a nonempty subset of X . We define an algebra T = T (Y ). This algebra is finite dimensional and semisimple. If Y consists of a single vertex then T is the corresponding subconstituent algebra defined by P. Terwilliger. We investigate the irreducible T -modules. We define endpoints and thin condition on i...
متن کاملDistance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra
Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent f...
متن کاملThe subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two
We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where A = A1 and E ∗ i denotes the projection onto the i th subconstituent of Γ wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2001
ISSN: 0095-8956
DOI: 10.1006/jctb.2000.2002